Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A Deep Look into Designing a Task and Coding Scheme through the Lens of Causal Mechanistic ReasoningThe purpose of this paper is to share the iterative process we used to design a task that elicits causal mechanistic reasoning and how the subsequent student responses can be analyzed. Our goal in this task is to strike a balance between eliciting as much student knowledge as possible without providing so much structure that the answer becomes obvious. The task development was approached using (1) a resources perspective of learning, (2) principles of scaffolding, and (3) evidence-centered design, for which we specified evidence that would be considered a fully causal mechanistic explanation. That is, an explanation which pays explicit attention to the properties, interactions, and behaviors of entities that are involved at a scalar level below the phenomenon under consideration. Since our eventual goal is to characterize how students use knowledge across disciplinary boundaries, the phenomenon of protein–ligand binding was chosen as the context for this task, because it requires students to apply ideas learned in chemistry courses to a biological phenomenon. After three rounds of iterative refinement, a final task was developed. To characterize students’ responses to this task, we developed a coding scheme which can be used to code explanations based on the presence or absence of three key ideas relevant to this phenomenon. In this paper, we share the detailed processes and approaches used in task development, which we hope will provide insight into instructors and researchers as they, too, develop such tasks to explore student reasoning.more » « less
-
A<sc>bstract</sc> An angular analysis ofB0→ K*0e+e−decays is presented using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. The analysis is performed in the region of the dilepton invariant mass squared of 1.1–6.0 GeV2/c4. In addition, a test of lepton flavour universality is performed by comparing the obtained angular observables with those measured inB0→ K*0μ+μ−decays. In general, the angular observables are found to be consistent with the Standard Model expectations as well as with global analyses of otherb → sℓ+ℓ−processes, whereℓis either a muon or an electron. No sign of lepton-flavour-violating effects is observed.more » « less
-
A<sc>bstract</sc> A search for the decay$$ {B}_c^{+} $$ → χc1(3872)π+is reported using proton-proton collision data collected with the LHCb detector between 2011 and 2018 at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. No significant signal is observed. Using the decay$$ {B}_c^{+} $$ →ψ(2S)π+as a normalisation channel, an upper limit for the ratio of branching fractions$$ {\mathcal{R}}_{\psi (2S)}^{\chi_{c1}(3872)}=\frac{{\mathcal{B}}_{B_c^{+}\to {\chi}_{c1}(3872){\pi}^{+}}}{{\mathcal{B}}_{B_c^{+}\to \psi (2S){\pi}^{+}}}\times \frac{{\mathcal{B}}_{\chi_{c1}(3872)\to J/\psi {\pi}^{+}{\pi}^{-}}}{{\mathcal{B}}_{\psi (2S)\to J/\psi {\pi}^{+}{\pi}^{-}}}<0.05(0.06), $$ is set at the 90 (95)% confidence level.more » « less
-
The branching fraction of the decay , relative to the topologically similar decay , is measured using proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of . The ratio is found to be , where the first uncertainty is statistical and the second systematic. Using the world-average branching fraction for , the branching fraction for the decay is found to be , where the first uncertainty is statistical, the second systematic, and the third is due to the branching fraction of the normalization channel. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
The first measurement of the asymmetry of the decay rate ( ) and the average ( ) and asymmetry ( ) of the forward-backward asymmetry in the muon system of decays is reported. The measurement is performed using a data sample of proton-proton collisions, recorded by the LHCb experiment from 2016 to 2018 at a center-of-mass energy of 13 TeV, which corresponds to an integrated luminosity of . The asymmetries are measured in two regions of dimuon mass near the -meson mass peak. The dimuon-mass integrated results are , , , where the first uncertainty is statistical and the second systematic. The results are consistent with the conservation of symmetry and the Standard Model expectations. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
A search for violation in and decays is presented using the full Run 1 and Run 2 data samples of collisions collected with the LHCb detector, corresponding to an integrated luminosity of at center-of-mass energies of 7, 8, and 13 TeV. For the Run 2 data sample, the -violating asymmetries are measured to be and , where the first uncertainty is statistical and the second is systematic. Following significant improvements in the evaluation of systematic uncertainties compared to the previous LHCb measurement, the Run 1 dataset is reanalyzed to update the corresponding results. When combining the Run 2 and updated Run 1 measurements, the final results are found to be and , constituting the most precise measurements of these asymmetries to date. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
An official website of the United States government
